
CALL

CALL [INTERFACE4] operand1 [USING] [operand2]...128

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L C G yes yes

CALL on Mainframe Computers
Part I: CALL under UNIX and Windows
INTERFACE4
Part II: CALL under UNIX and Windows

CALL on Mainframe Computers
Function
Program Name - operand1
Parameters - operand2
Return Code
Register Usage
Boundary Alignment
Adabas Calls
Direct/Dynamic Loading
Example
Linkage Conventions
Calling a PL/I Program

Function

The CALL statement is used to call an external program written in another standard programming language from a
Natural program and then return to the next statement after the CALL statement.

The called program may be written in any programming language which supports a standard CALL interface.
Multiple CALL statements to one or more external programs may be specified.

A CALL statement may be issued within a program to be executed under control of a TP monitor, provided that the
TP monitor supports a CALL interface.

Program Name - operand1

The name of the program to be called (operand1) can be specified as a constant or - if different programs are to be
called dependent on program logic - as an alphanumeric variable of length 1 to 8. A program name must be placed
left-justified in the variable.

1Copyright Software AG 2003

CALLCALL

Parameters - operand2

The CALL statement may contain up to 128 parameters (operand2), unless the INTERFACE4 option is used. In that
case, up to 32767 parameters may be used. Standard linkage register conventions are used. One address is passed in
the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user wishes to specify the beginning
address of a group, the first field of the group must be specified.

Note:
The internal representation of positive signs of packed numbers is changed to the value specified by the
PSIGNF parameter of the NTCMPO macro before control is passed to the external program.

Return Code

The condition code of any called program (content of register 15 upon return to Natural) may be obtained by using
the Natural system function RET.

Copyright Software AG 20032

CALLParameters - operand2

Example:

 ...
 RESET #RETURN(B4)
 CALL ’PROG1’
 IF RET (’PROG1’) > #RETURN
 WRITE ’ERROR OCCURRED IN PROGRAM1’
 END-IF
 ...

Register Usage

Register Contents

R1 Address pointer to the parameter address list.

R2 Address pointer to the field (parameter) description list.
The field description list contains information on the first 128 fields passed in the parameter list. Each
description is a 4-byte entry containing the following information:
- the 1st byte contains the type of variable (A,B,...)
If field type is "N" or "P":
- the 2nd byte contains the total number of digits;
- the 3rd byte contains the number of digits before the decimal point;
- the 4th byte contains the number of digits after the decimal point.
all other field types:
- the 2nd byte is unused;
- the 3rd-4th byte contain the length of field.

R3 Address pointer to list of field lengths. This list contains the length of each field passed in the parameter
list.
In the case of an array, the length is the sum of the individual occurrences’ lengths.

R13 Address of 18-word save area.

R14 Return address.

R15 Entry address/return code.

Boundary Alignment

The Natural data area, in which all user-defined variables are stored, always begins on a double-word boundary.

If DEFINE DATA is used, all data blocks (for example, LOCAL, GLOBAL blocks) are double-word aligned, and all
structures (level 1) are full-word aligned.

Alignment within the data area is the responsibility of the user and is governed by the order in which variables are
defined to Natural.

3Copyright Software AG 2003

Register UsageCALL

Adabas Calls

A called program may contain a call to Adabas. The called program must not issue an Adabas open or close
command. Adabas will open all database files referenced. If Adabas exclusive (EXU) update mode is to be used, the
Natural profile parameter OPRB must be used in order to open all referenced files. Before you attempt to use EXU
update mode, you should consult your Natural administrator.

Direct/Dynamic Loading

The called program may either be directly linked to the Natural nucleus (that is, the program is specified with the
CSTATIC parameter in the Natural parameter module; see also the Natural Operations documentation for
Mainframes, or it may be loaded dynamically the first time it is called. If it is to be loaded dynamically, the load
module library containing the called program must be concatenated to the Natural load library in the Natural
execution JCL or in the appropriate TP-monitor program library. Ask your Natural administrator for additional
information.

Example

The example on the next page shows a Natural program which calls the COBOL program "TABSUB" for the
purpose of converting a country code into the corresponding country name. Two parameter fields are passed by the
Natural program to TABSUB: the first parameter is the country code, as read from the database; the second
parameter is used to return the corresponding country name.

Calling Natural Program:

 * EXAMPLE ’CALEX1’: CALL PROGRAM ’TABSUB’
 * ***************************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 COUNTRY
 1 #COUNTRY (A3)
 1 #COUNTRY-NAME (A15)
 END-DEFINE
 *
 MOVE EDITED ’19550701’ to #FIND-FROM (EM=YYYYMMDD)
 MOVE EDITED #19550731’ to #FIND-TO (EM=YYYYMMDD)
 *
 FIND EMPLOY-VIEW WITH BIRTH = #FIND-FROM THRU #FIND-TO
 MOVE COUNTRY TO #COUNTRY
 CALL ’TABSUB’ #COUNTRY #COUNTRY-NAME
 DISPLAY NAME BIRTH (EM=YYYY-MM-DD) #COUNTRY-NAME
 END-FIND
 END

Copyright Software AG 20034

CALLAdabas Calls

Called COBOL program "TABSUB":

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABSUB.
 REMARKS. THIS PROGRAM PROVIDES THE COUNTRY NAME
 FOR A GIVEN COUNTRY CODE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 01 COUNTRY-CODE PIC X(3).
 01 COUNTRY-NAME PIC X(15).
 PROCEDURE DIVISION USING COUNTRY-CODE COUNTRY-NAME.
 P-CONVERT.
 MOVE SPACES TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’BLG’ MOVE ’BELGIUM’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’DEN’ MOVE ’DENMARK’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’FRA’ MOVE ’FRANCE’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’GER’ MOVE ’GERMANY’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’HOL’ MOVE ’HOLLAND’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’ITA’ MOVE ’ITALY’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’SPA’ MOVE ’SPAIN’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’UK’ MOVE ’UNITED KINGDOM’ TO COUNTRY-NAME.
 P-RETURN.
 GOBACK.

Linkage Conventions

CALL using Com-plete
CALL using CICS
Return Codes under CICS
Example using CICS

Standard linkage register notation is used in batch mode. Each TP monitor has its own conventions. These
conventions must be followed; otherwise, unpredictable results could occur. The following sections describe
conventions that apply for the supported TP monitors.

CALL using Com-plete

The called program must reside in the Com-plete online load library. This allows Com-plete to load the program
dynamically. The Com-plete utility ULIB may be used to catalog the program.

5Copyright Software AG 2003

Linkage ConventionsCALL

CALL using CICS

The called program must reside in either a load module library concatenated to the CICS library or the DFHRPL
library. The program must also have a PPT entry in the operating PPT so that CICS can locate the program and load
it.

The linkage convention passes the parameter list address followed by the field description list address in the first
fullwords of the TWA and the COMMAREA.The parameter FLDLEN in the NCIPARM parameter module controls
if the field length list is also passed (by default, it is not passed). The COMMAREA length (8 or 12) reflects the
number of list addresses passes (2 or 3). The last list address is indicated by the high-order bit being set. The user
must ensure addressability to the TWA or to the COMMAREA respectively. This is only required if the user
program has not been defined to Natural as a static or directly linked program, in which case the pointer to the
parameter list is passed via register 1, the pointer to the description list via register 2, and the pointer to the field
length list via register 3.

If you wish the parameter values themselves, rather than the address of their address list, to be passed in the
COMMAREA, issue the Natural terminal command %P=C before the call.

Normally, when a Natural programs calls a non-Natural program and the called program issues a conversational
terminal I/O, the Natural thread is blocked until the user has entered data. To prevent the Natural thread from being
blocked, the terminal command %P=V can be used

Normally, when a Natural program calls a non-Natural program under CICS, the call is accomplished by an "EXEC
CICS LINK" request. If standard linkage is to be used for the call instead, issue the terminal command %P=S (In this
case, the called program must adhere to standard linkage conventions with standard register usage).

In 31-bit-mode environments the following applies: if a program linked with AMODE=24 is called and the threads
are above 16 MB, a "call by value" will be done automatically, that is, the specified parameters which are to be
passed to the called program will be copied below 16 MB.

Return Codes under CICS

CICS itself does not support condition codes for a call with CICS conventions (EXEC CICS LINK). However, the
Natural CICS Interface supports return codes for the CALL statement: When control is returned from the called
program, Natural checks whether the first fullword of the COMMAREA has changed. If it has, its new content will
be taken as the return code. If it has not changed, the first fullword of the TWA will be checked and its new content
taken as the return code. If neither of the two fullwords has changed, the return code will be "0".

Note:
When parameter values are passed in the COMMAREA (%P=C), the return code is always "0".

Copyright Software AG 20036

CALLLinkage Conventions

Example using CICS:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABSUB.
 REMARKS. THIS PROGRAM PERFORMS A TABLE LOOK-UP AND
 RETURNS A TEXT MESSAGE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MSG-TABLE.
 03 FILLER PIC X(15) VALUE ’MESSAGE1 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE2 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE3 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE4 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE5 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE6 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE7 ’.
 01 TAB REDEFINES MSG-TABLE.
 03 MESSAGE OCCURS 7 TIMES PIC X(15).
 LINKAGE SECTION.
 01 TWA-DATA.
 03 PARM-POINTER USAGE IS POINTER.
 01 PARM-LIST.
 03 DATA-LOC-IN USAGE IS POINTER.
 03 DATA-LOC-OUT USAGE IS POINTER.
 01 INPUT-DATA.
 03 INPUT-NUMBER PIC 99.
 01 OUTPUT-DATA.
 03 OUTPUT-MESSAGE PIC X(15).
 PROCEDURE DIVISION.
 100-INIT.
 EXEC CICS ADDRESS TWA(ADDRESS OF TWA-DATA) END-EXEC.
 SET ADDRESS OF PARM-LIST TO PARM-POINTER.
 SET ADDRESS OF INPUT-DATA TO DATA-LOCIN.
 SET ADDRESS OF OUTPUT-DATA TO DATA-LOC-OUT.
 200-PROCESS.
 MOVE MESSAGE (INPUT-NUMBER) TO OUTPUT-MESSAGE.
 300-RETURN.
 EXEC CICS RETURN END-EXEC.
 400-DUMMY.
 GO-BACK.

7Copyright Software AG 2003

Linkage ConventionsCALL

Calling a PL/I Program

Example of Calling a PL/I Program:
Example of Calling a PL/I Program which is Operating under CICS

A called program written in PL/I requires the following additional procedures:

The ENTRY PLICALLA statement must be provided when the program is link-edited. This statement causes
the PL/I load module to receive control as a sub-program (that is, a called program).
If the PL/I program is to be called recursively, you may also use the program NATPLICA, which is contained
in the Natural source library. NATPLICA is an example of how a PL/I program can be called recursively from a
Natural program without causing any storage bottlenecks (for further details, please refer to the comments in the
program NATPLICA itself). A complete description of the ENTRY PLICALLA statement and further
information on how to call a PL/I program can be found in the relevant IBM PL/I documentation.
Since the parameter list is a standard list and is not an argument list being passed from another PL/I program,
the addresses passed do not point at a LOCATOR DESCRIPTOR. This problem may be resolved by defining
the parameter fields as arithmetic variables. This causes PL/I to treat the parameter list as addresses of data
instead of addresses of LOCATOR DESCRIPTOR control blocks.

The technique suggested for defining the parameter fields is illustrated in the following example:

 PLIPROG: PROC(INPUT_PARM_1, INPUT_PARM_2) OPTIONS(MAIN);
 DECLARE (INPUT_PARM_1, INPUT_PARM_2) FIXED;
 PTR_PARM_1 = ADDR(INPUT_PARM_1);
 PTR_PARM_2 = ADDR(INPUT_PARM_2);
 DECLARE FIRST_PARM PIC ’99’ BASED (PTR_PARM_1);
 DECLARE SECOND_PARM CHAR(12) BASED (PTR_PARM_2);

Each parameter in the input list should be treated as a unique element. The number of input parameters should
exactly match the number being passed from the Natural program. The input parameters and their attributes must
match the Natural definitions or unpredictable results may occur. For additional information on passing parameters
in PL/I, see the relevant IBM PL/I documentation.

Copyright Software AG 20038

CALLCalling a PL/I Program

Example of calling a PL/I Program:

 /* EXAMPLE ’CALEX2’: CALL PROGRAM ’NATPLI’
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 AREA-CODE
 2 REDEFINE AREA-CODE
 3 #AC(N1)
 1 #INPUT-NUMBER (N2)
 1 #OUTPUT-COMMENT (A15)
 END-DEFINE
 /***
 READ EMPLOY-VIEW IN LOGICAL SEQUENCE BY NAME
 STARTING FROM ’WAGNER’
 MOVE ’ ’ TO #OUTPUT-COMMENT
 MOVE #AC TO #INPUT-NUMBER
 CALL ’NATPLI’ #INPUT-NUMBER #OUTPUT-COMMENT
 END-READ
 END

 NATPLI: PROC(PARM_COUNT, PARM_COMMENT) OPTIONS(MAIN);
 /* */
 /* THIS PROGRAM ACCEPTS AN INPUT NUMBER */
 /* AND TRANSLATES IT TO AN OUTPUT CHARACTER */
 /* STRING FOR PLACEMENT ON THE FINAL */
 /* NATURAL REPORT */
 /* */
 /* */
 DECLARE PARM_COUNT, PARM_COMMENT FIXED;
 DECLARE ADDR BUILTIN;
 COUNT_PTR = ADDR(PARM_COUNT);
 COMMENT_PTR = ADDR(PARM_COMMENT);
 DECLARE INPUT_NUMBER PIC ’99’ BASED (COUNT_PTR);
 DECLARE OUTPUT_COMMENT CHAR(15) BASED (COMMENT_PTR);
 DECLARE COMMENT_TABLE(9) CHAR(15) STATIC INITIAL
 (’COMMENT1 ’,
 ’COMMENT2 ’,
 ’COMMENT3 ’,
 ’COMMENT4 ’,
 ’COMMENT5 ’,
 ’COMMENT6 ’,
 ’COMMENT7 ’,
 ’COMMENT8 ’,
 ’COMMENT9 ’);
 OUTPUT_COMMENT = COMMENT_TABLE(INPUT_NUMBER);
 RETURN;
 END NATPLI;

9Copyright Software AG 2003

Calling a PL/I ProgramCALL

Example of Calling a PL/I Program which is Operating under CICS:

 /* EXAMPLE ’CALEX3’: CALL PROGRAM ’CICSP’
 /***
 DEFINE DATA LOCAL
 1 #MESSAGE (A10) INIT <’ ’>
 END-DEFINE
 /***
 CALL ’CICSP’ #MESSAGE
 DISPLAY #MESSAGE
 /***
 END

 CICSP: PROCEDURE OPTIONS (MAIN REENTRANT);
 DCL 1 TWA_ADDRESS BASED(TWA_POINTER);
 2 LIST_ADDRESS POINTER;
 DCL 1 PTR_TO_LIST BASED(LIST_ADDRESS);
 2 PARM_01 POINTER;
 DCL MESSAGE CHAR(10) BASED(PARM_01);
 EXEC CICS ADDRESS TWA(TWA_POINTER);
 MESSAGE=’SUCCESS’; EXEC CICS RETURN; END CICSP;

Copyright Software AG 200310

CALLCalling a PL/I Program

Part I: CALL under UNIX and Windows
Function
Name of Called Function (operand1)
Parameters (operand2)

Function

The CALL statement is used to call an external function written in another standard programming language from a
Natural program and then return to the next statement after the CALL statement.

The called function may be written in any programming language which supports a standard CALL interface.
Multiple CALL statements to one or more external functions may be specified.

Name of Called Function - operand1

The name of the function to be called (operand1) may be specified as a constant or - if different functions are to be
called dependent on program logic - as an alphanumeric variable of length 1 to 8. A function name must be placed
left-justified in the variable.

Parameters - operand2

The CALL statement may contain up to 128 parameters (operand2). One address is passed to the external function in
the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user wishes to specify the beginning
address of a group, the first field of the group must be specified.

Note:
If an application-independent variable (AIV) or context variable is passed as a parameter to a user exit, the following
restriction applies: if the user exit invokes a Natural subprogram which creates a new AIV or context variable, the
parameter is invalid after the return from the subprogram. This is true regardless of whether the new AIV/context
variable is created by the subprogram itself or by another object invoked directly or indirectly by the subprogram.

11Copyright Software AG 2003

Part I: CALL under UNIX and WindowsCALL

INTERFACE4
INTERFACE 4 - External 3GL Program Interface
Operand Structure for Interface4
INTERFACE4 Parameter Access
Exported Functions

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external program. This
keyword is optional. If this keyword is specified, the interface, which is defined as ’Interface4’, is used for the call of
the external program. The following table lists the differences between the CALL statement used with
INTERFACE4 and the one used without INTERFACE4:

 CALL statement without keyword
INTERFACE4

Call statement with keyword
INTERFACE4

number of parameters possible128 32767

maximum data size of one
parameter

64 K 1 GB

retrieve array information no yes

support of large and dynamic
operands

no yes

parameter access via API no yes

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when the INTERFACE4 is specified with the
Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

USR_WORD numparm; 16 bit unsigned short value, containing the total number of transferred operands
(operand2)

void *parmhandle; Pointer to the parameter passing structure.

void *traditional; Check for interface type (if it’s not a NULL pointer it’s the traditional CALL
interface)

Copyright Software AG 200312

CALLINTERFACE4

Operand Structure for Interface4

The operand structure of Interface4 is named ’parameter_description’ and is defined as follows. The structure is
delivered with the header file natuser.h.

struct parameter_description

void
*

address address of the parameter data, not aligned, realloc() and free() are not
allowed

int format field data type: NCXR_TYPE_ALPHA, etc. (natuser.h)

int length length (before decimal point, if applicable)

int precision length after decimal point (if applicable)

int byte_length length of field in bytes int dimension number of dimensions (0 to
IF4_MAX_DIM)

int dimensions number of dimensions (0 to IF4_MAX_DIM)

int length_all total data length of array in bytes

int flags several flag bits combined by bitwise OR, meaning:
IF4_FLG_PROTECTED: the parameter is write protected,
IF4_FLG_DYNAMIC: the parameter is a dynamic variable,
IF4_FLG_NOT_CONTIGUOUS: the array elements are not contiguous
(have spaces between them),
IF4_FLG_AIV: is an application-independent variable
IF4_FLG_DYNVAR: the parameter is a dynamic variable
IF4_FLG_XARRAY: the parameter is an x-array
IF4_FLG_LBVAR_0: the lower bound of dimension 0 is variable
IF4_FLG_UBVAR_0: the upper bound of dimension 0 is variable
IF4_FLG_LBVAR_1: the lower bound of dimension 1 is variable
IF4_FLG_UBVAR_1: the upper bound of dimension 1 is variable
IF4_FLG_LBVAR_2: the lower bound of dimension 2 is variable
IF4_FLG_UBVAR_2: the upper bound of dimension 2 is variable

int occurrences[IF4_MAX_DIM] array occurrences in each dimension

int indexfactors[IF4_MAX_DIM] array indexfactors for each dimension

void
*

dynp reserved for internal use

void
*

pops reserved for internal use

The address element is null for arrays of dynamic variables and for x-arrays. In these cases, the array data cannot be
accessed as a whole, but must be accessed through the parameter access functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed directly using the
address element. In these cases the address of an array element (i,j,k) is computed as follows (especially if the array
elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1] + k * indexfactors[2].
If the array has less than 3 dimensions, leave out the last terms.

13Copyright Software AG 2003

Operand Structure for Interface4CALL

INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as follows. The 3GL
program is called via the CALL statement with the INTERFACE4 option, and the parameters are passed to the 3GL
program as described above. The 3GL program can now use the exported functions of Natural, to retrieve either the
parameter data itself, or information about the parameter, like format, length, array information, etc. The exported
functions can also be used to pass back parameter data. There are also functions to create and initialize a new
parameter set in order to call arbitrary subprograms from a 3GL program. With this technique a parameter access is
guaranteed to avoid memory overwrites done by the 3GL program. (Natural’s data is safe: memory overwrites within
the 3GL program’s data are still possible).

Exported Functions

Get Parameter Information
Get Parameter Data
Write Back Operand Data
Create, Initialize and Delete a Parameter Set

Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter. This information
is returned in the struct parameter_description, which is documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description *descr);

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list. Range: 0
... numparm-1.

parmhandlethe pointer to the internal parameter structure

descr address of a struct parameter_description

return 0: OK
-1 illegal parameter number
-2 internal error
-7 interface version conflict

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter. Natural identifies the parameter by the
given parameter number and writes the parameter data to the given buffer address with the given buffer size. If the
parameter data is longer than the given buffer size, Natural will truncate the data to the given length. The external
3GL program can make use of the function ncxr_get_parm_info, to request the length of the parameter data. There
are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if the parameter is an array),
whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for "buffer" by the 3GL program (dynamically or statically) results of
the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total parameter length), the
results depend on the machine type (little endian/big endian). In some applications, the user exit must be
programmed to use no static data to make recursion possible.

Copyright Software AG 200314

CALLINTERFACE4 - Parameter Access

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void *buffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be specified. The indexes
for unused dimensions should be specified as 0.

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list. Range:
0 ... numparm-1.

parmhandle pointer to the internal parameter structure

buffer_length length of the buffer, where the requested data has to be written to

buffer address of buffer, where the requested data has to be written to. This buffer should be aligned to
allow easy access to I2/I4/F4/F8 variables.

indexes array with index information

return Any value < 0 indicates an error during retrieval of the information.
A value of -1 indicates an illegal parameter number.
A value of -2 indicates an internal error.
A value of -3 indicates that data has been truncated.
A value of -4 indicates that data is not an array.
A value of -7 indicates an interface version conflict.
A value of -100 indicates that the index for dimension 0 is out of range.
A value of -101 indicates that the index for dimension 1 is out of range.
A value of -102 indicates that the index for dimension 2 is out of range.
A value of 0 indicates successful operation.
A value > 0 indicates successful operation, but the data was only this number of bytes long (buffer
was longer than the data).

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural identifies the
parameter by the given parameter number and writes the parameter data from the given buffer address with the given
buffer size to the parameter data. If the parameter data is shorter than the given buffer size, the data will be truncated
to the parameters data length, i.e., the rest of the buffer will be ignored. If the parameter data is longer than the given
buffer size, the data will copied only to the given buffer length, the rest of the parameter stays untouched. This
applies to arrays in the same way. For dynamic variables as parameters, the parameter is resized to the given buffer
length.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total parameter length), the
results depend on the machine type (little endian/big endian). In some applications, the user exit must be
programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
 int buffer_length, void *buffer);
int ncxr_put_parm_array (int parmnum, void *parmhandle,
 int buffer_length, void *buffer,
 int *indexes);

15Copyright Software AG 2003

Exported FunctionsCALL

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list. Range:
0 ... numparm-1.

parmhandle pointer to the internal parameter structure.

buffer_length length of the data to be copied back to the address of buffer, where the data comes from.

indexes index information

return Any value < 0 indicates an error during copying of the information:

A value of -1 indicates an illegal parameter number.
A value of -2 indicates an internal error.
A value of -3 indicates that too much data has been given. The copy back was done with parameter
length.
A value of -4 indicates that the parameter is not an array.
A value of -5 indicates that the parameter is protected (constant or AD=O).
A value of -6 indicates that the dynamic variable could not be resized due to an ’out of memory’
condition.
A value of -7 indicates an interface version conflict.

A value of -100 indicates that the index for dimension 0 is out of range
A value of -101 indicates that the index for dimension 1 is out of range
A value of -102 indicates that the index for dimension 2 is out of range

A value of 0 indicates successful operation.

A value > 0 indicates successful operation., but the parameter was this number of bytes long (length
of parameter > given length)

Create, Initialize and Delete a Parameter Set

This function is available with Natural Version 611 for Windows and UNIX. It is not available on mainframes.

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that corresponds to the
parameters the subprogram expects. The function ncxr_create_parm is used to create a set of parameters to be passed
with a call to ncxr_if_callnat. The set of parameters created is represented by an opaque parameter handle, like the
parameter set that is passed to the 3GL program with the CALL INTERFACE4 statement. Thus, the newly created
parameter set can be manipulated with functions ncxr_put_parm* and ncxr_get_parm* as described above.

The newly created parameter set is not yet initialized after having called the function ncxr_create_parm. An
individual parameter is initialized to a specific data type by a set of ncxr_parm_init* functions described below. The
functions ncxr_put_parm* and ncxr_get_parm* are then used to access the contents of each individual parameter.
After the caller has finished with the parameter set, they must delete the parameter handle. Thus, a typical sequence
in creating and using a set of parameters for a subprogram to be called through ncxr_if4_callnat will be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*
ncxr_get_parm_info*

Copyright Software AG 200316

CALLExported Functions

ncxr_if4_callnat

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm

Create Parameter Set

The function ncxr_create_parm is used to create a set of parameters to be passed with a call to ncxr_if_callnat.

Prototype

 int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description

parmnum Number of parameters to be created.

pparmhandle Pointer to the created parameter handle.

return Any value < 0 indicates an error.
A value of -1 indicates an illegal parameter count.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of 0 indicates successful operation.

Delete Parameter Set

The function ncxr_delete_parm is used to delete a set of parameters that was created with ncxr_create_parm.

Prototype

 int ncxr_delete_parm(void* parmhandle)

Parameter Description

parmhandle Pointer to the parameter handle to be deleted.

return Any value < 0 indicates an error.
A value of -2 indicates an internal error.
A value of 0 indicates successful operation.

Initialize a Scalar of a Static Data Type

Prototype

 int ncxr_init_parm_s(int parmnum, void *parmhandle,
 char format, int length, int precision, int flags);

Parameter Description

17Copyright Software AG 2003

Exported FunctionsCALL

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list . Range:
0 ... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

length Length of the parameter.

precision Precision of the parameter.

flags A combination of the flags
IF4_FLG_PROTECTED

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -9 indicates an invalid length or precision.
A value of 0 indicates successful operation.

Copyright Software AG 200318

CALLExported Functions

Initialize an Array of a Static Data Type

Prototype

int ncxr_init_parm_sa(int parmnum, void *parmhandle,
 char format, int length, int precision,
 int dim, int *occ, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list. Range: 0
... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

length Length of the parameter.

precision Precision of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -9 indicates an invalid length or precision.
A value of -10 indicates an invalid dimension count.
A value of -11 indicates an invalid combination of variable bounds.
A value of 0 indicates successful operation.

19Copyright Software AG 2003

Exported FunctionsCALL

Initialize a Scalar of a Dynamic Data Type

Prototype

int ncxr_init_parm_d(int parmnum, void *parmhandle,
 char format, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list. Range: 0
... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

flags A combination of the flags
IF4_FLG_PROTECTED

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of 0 indicates successful operation.

Copyright Software AG 200320

CALLExported Functions

Initialize an Array of a Dynamic Data Type

Prototype

int ncxr_init_parm_da(int parmnum, void *parmhandle,
 char format, int dim, int *occ, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list. Range: 0
... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -10 indicates an invalid dimension count.
A value of -11 indicates an invalid combination of variable bounds.
A value of 0 indicates successful operation.

21Copyright Software AG 2003

Exported FunctionsCALL

Resize an X-array Parameter

Prototype

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list. Range: 0
... numparm-1.

parmhandle Pointer to the parameter handle.

occ New number of occurrences per dimension.

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -12 indicates that the operand is not resizable (in one of the specified dimensions).
A value of 0 indicates successful operation.

All function prototypes are declared in the file natuser.h.

If the 3GL program is executed on mainframe computers, the delivered interface module NATXCAL4 has to be
linked to the 3GL program.

Copyright Software AG 200322

CALLExported Functions

Part II: CALL under UNIX and Windows
Return Code
User Exits under Windows
User Exits under UNIX

Return Code

The condition code of any called function may be obtained by using the Natural system function RET.

Example:

 ...
 RESET #RETURN(B4)
 CALL ’PROG1’
 IF RET (’PROG1’) > #RETURN
 WRITE ’ERROR OCCURRED IN PROGRAM1’
 END-IF
 ...

User Exits under Windows

Under Windows, user exits are needed to be able to access external functions that are invoked with a CALL
statement. The user exits have to be placed in a DLL (dynamic link library). For further information on the user
exits, please refer to the following file:

%NATDIR%\%NATVERS%\samples\sysexuex\readme.txt

23Copyright Software AG 2003

Part II: CALL under UNIX and WindowsCALL

User Exits under UNIX

Step 1 - Defining the Jump Table
Step 2 - Writing the External Functions
Step 3 - Compiling and Linking
How to Build a Shared Library
Using the Shared Library
How to Generate a Static Nucleus
Example Programs

Under UNIX, user exits are needed to make external functions available and to access operating-system interfaces
that are not available to Natural.

The user exits can be placed either in a shared library and thus linked dynamically, or in a library that is linked
statically to the Natural nucleus.

If they are placed in shared libraries, it is not necessary to relink Natural whenever a user exit is modified. This
makes the development and testing of user exits a lot easier. This feature is available under all operating systems that
support shared libraries.
Under all operating systems, it is possible to place user exits in a library that is linked to the Natural nucleus; that is,
to statically link the user exits with the Natural prelinked object "natraw.o".

A user exit is added to Natural in three steps:

1. A jump table has to be created that allows Natural to associate the name of a function invoked by a CALL
statement with the address of the function.

2. The functions that were put into the jump table must be written.
3. In the case of a dynamic link, the shared library that contains the user exits has to be rebuilt.

In the case of a static link, the jump table and the external functions must be linked together with the prelinked
Natural nucleus, to produce an executable Natural nucleus that supports the external functions.

Step 1 - Defining the Jump Table

A sample of a jump table - "jumptab.c" - can be found in the directory:

$NATDIR/$NATVERS/samples/sysexuex

Step 2 - Writing the External Functions

Each function has three parameters and returns a long integer. A function prototype should be as follows:

 NATFCT myadd (nparm, parmptr, parmdec)

 WORD nparm;
 BYTE **parmptr;
 FINFO *parmdec;

nparm 16 bit unsigned short value, containing the total number of transferred operands (operand2).

parmptr Array of pointers, pointing to the transferred operands.

parmdec Array of field information for each transferred operand.

Copyright Software AG 200324

CALLUser Exits under UNIX

The data type FINFO is defined as follows:

 typedef struct {
 unsigned char TypeVar; /* type of variable */
 unsigned char pb2; /* if type == (’D’, ’N’, ’P’ or ’T’) ==> */
 /* total num of digits */
 /* else */
 union { /* unused */
 unsigned char pb[2]; /* if type == (’D’, ’N’, ’P’ or ’T’) ==> */
 unsigned short lfield; /* pb[0] = #dig before.dec.point */
 } flen; /* pb[1] = #dig after.dec.point */
 /* else */
 /* lfield = length of field */
 } FINFO;

Next, the module containing the external functions must be written. A sample function - "mycadd.c" - can be found
in the directory:

$NATDIR/$NATVERS/samples/sysexuex

Step 3 - Compiling and Linking

The file "natuser.h", which is included by the sample program, is delivered with Natural. It contains declarations for
the data types BYTE, WORD and the FINFO structure, that is, the description of the internal representation of each
passed parameter.

In the case of dynamically linked user exits, the shared library containing the user exits has to be rebuilt.
In the case of statically linked user exits, the Natural nucleus has to be relinked.

For these purposes, it is strongly recommended to use the sample makefiles supplied by Software AG, as they
already contain the necessary compiler and linker parameters. The sample makefiles can be found in the directory:

$NATDIR/$NATVERS/samples/sysexuex

For further information, see the following sections and the explanations in the makefiles themselves.

How to Build a Shared Library

1. From the example directory, which is contained in
$NATDIR/$NATVERS/samples/sysexuex
copy the following files into your work directory:
Makedyn
jumptab.c
ncuxinit.c

2. Copy the C source files which contain your user exits into the same work directory.
3. Edit the file "jumptab.c" to include the names and function pointers for your user exits. To do so, you add in

Section 2 the external declarations of your user exits, and in Section 3 you add the name/function-pointer pairs
for your user exits. You might consider cutting and pasting the appropriate sections from your pre-2.2 version
of "jumptab.c".

4. Edit the makefile as follows:
Specify the names of the object files containing the user exits in the following line:
USEROBJS =
Specify the name of the resulting shared library in the following line:
USERLIB =
If you need to include private header files, specify the directories containing them in the following line:
INCDIR =

5. To remove all unneeded files, issue the command:

25Copyright Software AG 2003

User Exits under UNIXCALL

make -f Makedyn clean
6. To compile and link your shared library, issue the command:

make -f Makedyn lib

Using the Shared Library

Set the environment variable NATUSER to the libraries you want to use. For example:

setenv NATUSER $NATDIR/$NATVERS/bin/<library-name>

You must specify a full qualified path name for the shared library.

You can specify more than one path if you delimit them with a colon (:) like the UNIX PATH variable.

Example:

See the sample user exit function in $NATDIR/$NATVERS/samples/sysexuex.

Note:
The libraries are searched in the order in which they are specified in NATUSER. This means that if two libraries
contain a function of the same name, Natural always calls the function in the library which is specified first in
NATUSER.

How to Generate a Static Nucleus

1. From the example directory, which is contained in $NATDIR/$NATVERS/samples/sysexuex
copy the following files into your work directory:
Makefile
jumptab.c

2. Copy the C source files which contain your user exits into the same work directory.
3. Edit the file "jumptab.c" to include the names and function pointers for your user exits. To do so, you add in

Section 2 the external declarations of your user exits, and in Section 3 you add the name/function-pointer pairs
for your user exits. You might consider cutting and pasting the appropriate sections from your pre-2.2 version
of "jumptab.c".

4. Edit the makefile as follows:
Specify the names of the object files containing the user exits in the following line:
USEROBJS =
If you need to include private header files, specify the directories containing them in the following line:
INCDIR =

5. Issue the command "make" to get information about further processing options.

Copyright Software AG 200326

CALLUser Exits under UNIX

Example:

See the sample user exit function in $NATDIR/$NATVERS/samples/sysexuex.

Example Programs:

After successful compilation and linking, the external programs can be invoked from a Natural program.
Corresponding Natural example programs are provided in the library SYSEXUEX.

27Copyright Software AG 2003

User Exits under UNIXCALL

	CALL
	CALL on Mainframe Computers
	Function
	Program Name - operand1
	Parameters - operand2
	Return Code
	Register Usage
	Boundary Alignment
	Adabas Calls
	Direct/Dynamic Loading
	Example
	Calling Natural Program:
	Called COBOL program "TABSUB":

	Linkage Conventions
	CALL using Com-plete
	CALL using CICS
	Return Codes under CICS
	Example using CICS:

	Calling a PL/I Program
	Example of calling a PL/I Program:
	Example of Calling a PL/I Program which is Operating under CICS:

	Part I: CALL under UNIX and Windows
	Function
	Name of Called Function - operand1
	Parameters - operand2

	INTERFACE4
	INTERFACE4 - External 3GL Program Interface
	Operand Structure for Interface4
	INTERFACE4 - Parameter Access
	Exported Functions
	Get Parameter Information
	Get Parameter Data
	Write Back Operand Data
	Create, Initialize and Delete a Parameter Set
	Initialize a Scalar of a Static Data Type
	Initialize an Array of a Static Data Type
	Initialize a Scalar of a Dynamic Data Type
	Initialize an Array of a Dynamic Data Type
	Resize an X-array Parameter

	Part II: CALL under UNIX and Windows
	Return Code
	User Exits under Windows
	User Exits under UNIX
	Step 1 - Defining the Jump Table
	Step 2 - Writing the External Functions
	Step 3 - Compiling and Linking
	How to Build a Shared Library
	Using the Shared Library
	How to Generate a Static Nucleus
	Example Programs:

